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Abstract: In this paper, we forecast the realized volatility of the Shanghai Composite Index using the 
heterogeneous autoregressive model for realized volatility (HAR-RV) and its various extensions. 
Then we take a new variable named Chinese ETF volatility index into consideration, in order to 
compare the predictive ability between conventional models and the corresponding extended models. 
Our empirical results suggest that the new variable shows a significantly positive impact on the future 
volatility of Chinese stock market, and the extended models generate superior out-of-sample 
forecasting performance than the original models based on the model confidence set (MCS) test. 
Additionally, various sample periods, alternative volatility estimators, and alternative evaluation 
methods confirm the robustness of our results.  

1. Introduction 
Given that stock market volatility is central to asset pricing, asset allocation, and risk management, 

it is crucial to forecast volatility more accurately. Numerous studies have documented that (intra-daily) 
high-frequency data are useful for forecasting volatility. High-frequency volatility models measure the 
so-called realized volatility (RV), a concept that was pioneered by Andersen and Bollerslev (1998) 
[1]. Among the subsequent realized volatility models, the heterogeneous autoregressive RV (HAR-
RV) model proposed by Corsi (2009) is one of the most popular [2]. Although the specification of 
HAR-RV is simple, it can capture ‘‘stylized facts” in financial market volatility such as long memory 
and multi-scaling behavior. HAR-RV has become the standard benchmark for analyzing and 
forecasting financial volatility dynamics (see,e.g., Yaojie Zhang et al.,2019; Yaojie Zhang et al.,2020) 
[3-4]. 

Our motivation is straightforward. The ETF volatility are documented to have strong links with 
stock markets volatility and return, and ETF has predictive power (see, e.g., Jose A Gutierrez et 
al.,2009; Qingfu Liu and Yiuman Tse,2017; Ivan T. Ivanov and Stephen L. Lenkey ,2018; Fangfei 
Zhu et al., 2019) [5-8]. Mike Buckle et al. (2018) proposes that ETFs can lead the price moves, and 
have adjusted prices actively to pre-market information and activities [9]. It is verified by Sanjeev 
Bhojraj et.al (2020) that exchange-traded funds (ETFs) play in the transfer of information across firms 
around earnings announcements [10]. Marie-Eve Lachance (2021) examines that exchange-traded 
funds’ (ETFs) unusually high overnight returns are distorted by market microstructure effects. Thus, 
we can conclude that the impact of ETF volatility will be transmitted to the stock market volatility 
[11]. Therefore, an increase of ETF volatility index may lead to a corresponding increase of the 
volatilities for stock markets. Inspired by this, this paper will research the effect of ETF volatility index 
on realized volatility of stock markets. 

There are, however, few studies that forecast Chinese stock market volatility using ETF volatility 
index. To fill this gap, in this study, we forecast the realized volatility of the Shanghai Composite 
Index using the HAR-RV model and its extensions. We follow a related study by Wang et al. (2016) 
and use four of popular HAR-RV-type models summed up by that article [12]. Additionally, we add 
the variable ETF volatility index, in order to compare the predictive ability between conventional 
models and the corresponding extended models. 
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Our empirical results provide several notable findings. First of all, the in-sample estimation results 
show that our new predictor of ETF volatility index has a significantly positive impact on the realized 
volatility of the Chinese stock market. Secondly, the model confidence set (MCS) test proposed by 
Hansen et al. (2011) shows that the extended models generate superior out-of-sample forecasting 
performance than the original models [13]. Thirdly, we provide several robustness tests. Particularly, 
we perform the Direction-of-Change (DoC) test suggest by Degiannakis and Filis (2017) to explore 
the directional accuracy of volatility forecasts [14]. The Pesaran and Timmermann (1992) statistics 
suggest that the null hypothesis of no directional accuracy is rejected at the 1% significance level for 
all the forecasting models [15]. More importantly, our HAR-RV-RS-I-VI and HAR-RV-SJ-I-VI 
models yield more correct DoC rates than the original models, supporting the superiority of the two 
proposed models in terms of the directional accuracy. In addition, we provide evidence that our results 
are robust to various sample periods, alternative volatility estimators, and alternative evaluation 
methods. 

The remainder of the paper is organized as follows. Section 2 provides the econometric 
specifications. Section 3 describes our data. Section 4 presents the empirical results. Section 5 details 
a series of robustness checks. Finally, Section 6 concludes. 

2. Methodology 
In this section, we briefly describe several popular realized volatility models.  

2.1. Realized volatility measure 
In the pioneering work of past scholars, Andersen and Bollerslev (1998) propose using realized 

volatility (RV) as a proxy for integrated variance [1]. For a specific business day t, the realized 
volatility can be calculated as the sum of the squared intraday returns:  

                         𝑅𝑅𝑉𝑉𝑡𝑡 = ∑  𝑀𝑀
𝑗𝑗=1 𝑟𝑟𝑡𝑡,𝑗𝑗

2 , 𝑡𝑡 = 1,2, … ,𝑇𝑇                            (1) 

Where 𝑟𝑟𝑡𝑡,𝑗𝑗 represents the j-th intraday return on day t ,1/M is the given sampling frequency. 

2.2. Modeling realized volatility 
In recent years, the heterogeneous autoregressive realized volatility (HAR-RV) of Corsi (2009) has 

been the most popular RV model [2]. This model accommodates some of the stylized facts found in 
financial asset return volatility such as long memory and multi-scaling behavior. The HAR-RV is 
simple to implement, as it only contains three predictors: including lagged daily realized volatility 
(RV𝑑𝑑,𝑡𝑡), lagged weekly realized volatility (RV𝑤𝑤,𝑡𝑡), and lagged monthly realized volatility (RV𝑚𝑚,𝑡𝑡). The 
HAR-RV model specification can be expressed as  

RV𝑡𝑡+1 = 𝛽𝛽0 + 𝛽𝛽𝑑𝑑RV𝑡𝑡 + 𝛽𝛽𝑤𝑤RV𝑤𝑤,𝑡𝑡 + 𝛽𝛽𝑚𝑚RV𝑚𝑚,𝑡𝑡 + 𝜀𝜀𝑡𝑡+1                    (2) 

where 𝑅𝑅𝑉𝑉𝑡𝑡−ℎ:𝑡𝑡−1 = (1/ℎ)(𝑅𝑅𝑉𝑉𝑡𝑡−ℎ + ⋯+ 𝑅𝑅𝑉𝑉𝑡𝑡−1).Thus RV𝑤𝑤,𝑡𝑡 is the average RV from day t-4 to 
day t and RV𝑚𝑚,𝑡𝑡 is the average RV from day t-21 to t. 

To capture the role of the ‘‘leverage effect” in volatility dynamics, Patton and Sheppard (2015) 
develop a series of models using signed realized measures [16]. The first model extends the standard 
HAR-RV by decomposing daily RV into two semi-variances (HAR-RV-RS-I), 

           RV𝑡𝑡+1 = 𝛽𝛽0 + 𝛽𝛽𝑑𝑑+RS𝑡𝑡+ + 𝛽𝛽𝑑𝑑−RS𝑡𝑡− + 𝛽𝛽𝑤𝑤RV𝑤𝑤,𝑡𝑡 + 𝛽𝛽𝑚𝑚RV𝑚𝑚,𝑡𝑡 + 𝜀𝜀𝑡𝑡+1                (3) 

Where RS𝑡𝑡− = ∑  𝑀𝑀
𝑗𝑗=1 𝑟𝑟𝑡𝑡,𝑗𝑗

2 𝐼𝐼�𝑟𝑟𝑡𝑡,𝑗𝑗 < 0� and RS𝑡𝑡+ = ∑  𝑀𝑀
𝑗𝑗=1 𝑟𝑟𝑡𝑡,𝑗𝑗

2 𝐼𝐼�𝑟𝑟𝑡𝑡,𝑗𝑗 > 0� 
The second model for capturing the ‘‘leverage effect” contains a signed jump variation and an 

estimator of the variation caused by the continuous part (bi-power variation) (HAR-RV-SJ-I): 

RV𝑡𝑡+1 = 𝛽𝛽0 + 𝛽𝛽j,𝑑𝑑SJ𝑡𝑡 + 𝛽𝛽𝑏𝑏𝑏𝑏,𝑑𝑑𝐵𝐵𝑉𝑉𝑡𝑡 + 𝛽𝛽𝑤𝑤RV𝑤𝑤,𝑡𝑡 + 𝛽𝛽𝑚𝑚RV𝑚𝑚,𝑡𝑡 + 𝜀𝜀𝑡𝑡+1             (4) 

Where SJ𝑡𝑡 = RS𝑡𝑡+ − RS𝑡𝑡−, BPV𝑡𝑡 = 𝑢𝑢1−2 ∑  𝑀𝑀
𝑗𝑗=2 �𝑟𝑟𝑡𝑡,𝑗𝑗−1��𝑟𝑟𝑡𝑡,𝑗𝑗�, 𝑢𝑢1 = (2/𝜋𝜋)0.5 = 𝐸𝐸(|𝑍𝑍|). 
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The last model for the ‘‘leverage effect” decomposes the role of the positive and negative jumps, 
which is termed HAR-RV-SJ-II, 

RV𝑡𝑡+1 = 𝛽𝛽0 + 𝛽𝛽𝑗𝑗,𝑑𝑑
+ SJ𝑡𝑡+ + 𝛽𝛽𝑗𝑗,𝑑𝑑

− S𝐽𝐽𝑡𝑡− + 𝛽𝛽𝑏𝑏𝑏𝑏,𝑑𝑑𝐵𝐵𝑉𝑉𝑡𝑡 + 𝛽𝛽𝑤𝑤RV𝑤𝑤,𝑡𝑡 + 𝛽𝛽𝑚𝑚RV𝑚𝑚,𝑡𝑡 + 𝜀𝜀𝑡𝑡+1        (5) 

Where SJ𝑡𝑡+ = SJ𝑡𝑡I(SJ𝑡𝑡 > 0) and SJ𝑡𝑡− = SJ𝑡𝑡I(SJ𝑡𝑡 < 0). 
Thus, we have four HAR-type volatility equations to model and forecast realized volatility. 

Meanwhile, in order to compare the forecasting results with and without ETF Volatility Index in the 
model, our research will this variable to the above four classic models. 

3. Data 
To forecast the Chinese stock market volatility, we use CBOE China ETF Volatility Index (VIX) 

from FRED Economic Research. The Shanghai Composite Index (SSEC) serves as a representative of 
the Chinese stock market, the realized variance of which is obtained from the Oxford-Man Institute’s 
Quantitative Finance Realized Library. Because Liu et al. (2015) find little evidence that the 5-min 
RV is outperformed by any other measures from 400 volatility estimators for 31 different financial 
assets spanning five asset classes [17]. Therefore, we use 5-min RV from the SSEC index. 

Our sample period is from April 18, 2011 to June 22, 2021.After matching the days on which all 
the considered the Chinese stock market trading days have corresponding VIX, we obtain 2392 
observations for the stock market. To generate out-of-sample forecasts, we divide the whole sample 
period into an in-sample estimation period consisting of the first 1000 observations and an out-of-
sample evaluation period consisting of the remaining 1392 observations. 

Figure 1 depicts the evolution of the Chinese stock market’s realized volatility and China ETF 
Volatility Index. Their corresponding descriptive statistics are shown in Table 1. All of the series are 
right skewed except SJ and SJ-, and they all display positive kurtosis, suggesting they have non-normal 
distributions. The Jarque-Bera statistic rejects the null hypothesis of a normal distribution for these 
variables at 1% significant level, further confirming the fat-tailed distribution. Finally, the null 
hypothesis of a unit root is rejected at the 1% significance level based on the Augmented Dickey-
Fuller (ADF) statistics. This evidence suggests that all the time series of these realized variances are 
stationary and thereby can be employed directly without further transformations. 

Table 1. Descriptive statistics 

Variables Min Max Mean Std. Dev. Skewness Kurtosis Jarque-Bera ADF 
RV 0.046 41.460 1.220 2.628 8.277 92.046 868140.14 -5.04*** 

RVw 0.113 30.723 1.221 2.182 6.335 54.992 316102.54 -4.35*** 

RVm 0.160 15.147 1.221 1.831 4.485 24.232 66275.28 -3.42** 

BPV 0.050 45.308 1.114 2.500 8.886 106.595 1159134.79 -4.84*** 

RS + 0.016 20.894 0.605 1.396 7.844 81.325 680878.21 -4.51*** 

RS- 0.018 27.725 0.616 1.363 9.533 127.748 1655808.26 -5.46*** 

SJ -14.54 11.429 -0.011 0.840 -1.169 88.015 769418.07 -10.23*** 

SJ+ 0.00 11.429 0.149 0.578 9.515 121.608 1503852.63 -5.12*** 

SJ- -14.54 0.000 -0.160 0.569 -13.797 269.673 7294163.17 -10.42*** 

ETF_VI 15.09 69.280 25.688 6.754 1.732 4.678 3364.36 -5.85*** 

This table reports the descriptive statistics of all the used variables. The Jarque-Bera statistic is used 
to test the null hypothesis of normal distribution. ADF is the Augmented Dickey-Fuller statistic. All 
realized variances here are multiplied by 10000. The entire sample period is from April 18, 2011, to 
June 22, 2021. ***Indicates significance at the 1% level. ** Indicates significance at the 5% 
level. *Indicates significance at the 10% level. 
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Figure 1. The realized variances of SSEC and China ETF Volatility Index. 

The sample period is from April 18, 2011 to June 22, 2021. 

4. Empirical results  
In this section, we first give the in-sample estimation results of the eight volatility models used in 

study. Then, we evaluate the out-of-sample forecasting performances of the eight models with and 
without ETF Volatility Index. 

4.1. In-sample estimation results 
Table 2 and table 3 show the OLS estimates of the eight volatility models over the whole sample 

period along with the t-statistics based on the Newey–West. From the two tables, we can see that the 
parameter estimates of daily, weekly, and monthly RV in each model are all significant at the 1% level, 
suggesting strong persistence in the realized volatility dynamics. The coefficients of leverage effect in 
the HAR-RV-RS-I, HAR-RV-SJ-I, HAR-RV-SJ-II and corresponding extended models added ETF 
volatility Index are significant, indicating that it plays an important role in the volatility process. 
Moreover, we examine the null hypothesis that positive and negative semi-variances have equal 
predictive power for realized volatility (i.e., 𝛽𝛽𝑑𝑑+  = 𝛽𝛽𝑑𝑑− ) based on the benchmark model and 
corresponding extended model. The parameter estimates of the signed jumps, 𝛽𝛽𝑗𝑗,𝑑𝑑

+  is significantly 
positive while 𝛽𝛽𝑗𝑗,𝑑𝑑

−  is not significantly, indicating that only positive (‘‘good”) jumps lead to higher 
future volatility. 

Additionally, the regression coefficients of the Chinese ETF volatility Index are positive and 
significant at the 1% level in the latter four models. It indicates the index has a positive impact on the 
volatility of Chinese stock market. Taking the adjusted R2 into consideration, we can find that the 
value of the adjusted R2 is more than 68% and the value of which has increased in the four extended 
models. The overall model fits better. 
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Table 2. Estimation results of realized volatility models for the whole sample 
 HAR-RV HAR-RV-RS-I HAR-RV-SJ-I HAR-RV-SJ-II 

𝛽𝛽0 -0.846*** 
(-6.632) 

-0.623*** 

(-4.795) 
-0.842*** 
(-6.611) 

-1.077*** 
(-7.122) 

𝛽𝛽𝑑𝑑 0.349*** 

(14.033) 
   

𝛽𝛽𝑤𝑤 0.350*** 

(9.563) 
0.377*** 
(10.355) 

0.385*** 
(10.749) 

0.382*** 
(10.682) 

𝛽𝛽𝑚𝑚 0.220*** 

(7.496) 
0.214*** 
(7.347) 

0.218*** 
(7.432) 

0.220*** 
(7.538) 

𝛽𝛽𝑑𝑑+  0.279*** 
(14.569) 

  

𝛽𝛽𝑑𝑑−  0.046** 
(2.077) 

  

𝛽𝛽j,𝑑𝑑   667.093*** 
(5.138) 

 

𝛽𝛽𝑏𝑏𝑏𝑏,𝑑𝑑   0.314*** 
(13.063) 

0.291*** 
(11.530) 

𝛽𝛽𝑗𝑗,𝑑𝑑
+     1.163e+03*** 

(5.385) 

𝛽𝛽𝑗𝑗,𝑑𝑑
−     192.548 

(0.917) 
𝛽𝛽𝑉𝑉𝑉𝑉     

Adj.R2 0.6804 0.6864 0.6826 0.6835 
This table provides the parameter estimation results for the four realized volatility models for the 

whole sample period from April 18, 2011 through June 22, 2021. The numbers in the parentheses are 
the t-statistics. The asterisks*, **and***denote rejections of null hypothesis at 10%, 5% and 1% 
significance levels, respectively. 

Table 3. Estimation results of extended realized volatility models for the whole sample 
 HAR-RV-VI HAR-RV-RS-I-VI HAR-RV-SJ-I-VI HAR-RV-SJ-II-VI 
𝛽𝛽0 -1.767*** 

(-5.986) 
 

-1.523*** 
(-5.175) 

 

-1.878*** 
(-6.396) 

-2.107*** 
(-6.933) 

𝛽𝛽𝑑𝑑 0.345*** 
(13.882) 

 

   

𝛽𝛽𝑤𝑤 0.343*** 
(9.375) 

0.369*** 
(10.123) 

0.374*** 
(10.448) 

0.371*** 
(10.382) 

𝛽𝛽𝑚𝑚 0.200*** 
(6.689) 

0.194*** 
(6.556) 

0.195*** 
(6.547) 

0.198*** 
(6.652) 

𝛽𝛽𝑑𝑑+ 
 

0.276*** 
(14.404) 

  

𝛽𝛽𝑑𝑑− 
 

0.047** 
(2.121) 

  

𝛽𝛽j,𝑑𝑑 
  

669.602*** 
(5.173) 

 

𝛽𝛽𝑏𝑏𝑏𝑏,𝑑𝑑 
  

0.312*** 
(13.023) 

0.290*** 
(11.498) 

𝛽𝛽𝑗𝑗,𝑑𝑑
+  

   
1.163e+03*** 

(5.395) 
𝛽𝛽𝑗𝑗,𝑑𝑑
−  

   
198.723 
(0.949) 

𝛽𝛽𝑉𝑉𝑉𝑉 0.193*** 
(3.458) 

0.189*** 
(3.406) 

0.218*** 
(3.913) 

0.217*** 
(3.902) 

Adj.R2 0.6819 0.6878 0.6845 0.6854 
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This table provides the parameter estimation results for the four extended realized volatility models 
for the whole sample period from April 18, 2011 through June 22, 2021. The numbers in the 
parentheses are the t-statistics. The asterisks*, **and***denote rejections of null hypothesis at 10%, 5% 
and 1% significance levels, respectively. 

4.2. Out-of-sample forecasting performance 
The out-of-sample forecasting results are more important than the in-sample estimation results. 

Therefore, we generate the out-of-sample forecasts of the Chinese realized volatility based on a rolling 
estimation window. More specifically, our entire sample is divided into an in-sample portion 
composed of the first 1000 observations and an out-of-sample portion composed of the remaining 1392 
observations. When we obtain each out-of-sample forecast, we should roll forward the estimation 
sample by adding one new observation and dropping the first one in the previous estimation window. 

To quantitatively compare the out-of-sample performance among the forecasting models used by 
this paper, we apply two popular loss functions of QLIKE and MSE. In particular, Patton (2011) 
demonstrates that, in terms of the ranking of competing volatility forecasts, QLIKE and MSE are 
robust to the presence of noise in the volatility proxy [18]. MSE is the mean squared error of realized 
variance forecasts. Statistically, QLIKE, and MSE can be expressed as follows:  

                        𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 1
𝑞𝑞
∑  𝑚𝑚+𝑞𝑞
𝑡𝑡=𝑚𝑚+1 �log �𝑅𝑅𝑅𝑅�𝑡𝑡� + 𝑅𝑅𝑉𝑉𝑡𝑡

𝑅𝑅𝑅𝑅�𝑡𝑡
�                      (6) 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑞𝑞
∑  𝑚𝑚+𝑞𝑞
𝑡𝑡=𝑚𝑚+1 �𝑅𝑅𝑉𝑉𝑡𝑡 − 𝑅𝑅𝑅𝑅�𝑡𝑡�

2
                          (7) 

Where 𝑅𝑅𝑉𝑉𝑡𝑡 is the actual RV on day t,𝑅𝑅𝑅𝑅�𝑡𝑡is the RV forecast based on one of the forecasting models, 
and m and q are the length of in-sample estimation period and out-of-sample evaluation period, 
respectively. 

We assess the statistical significance of differences in forecasting losses using the model confidence 
set (MCS) proposed by Hansen et al. (2011) [13]. A MCS is a subset of models that contains the best 
model with a given level of confidence. Following Hansen et al. (2011), Wang et al. (2016), and Liu 
et al. (2018), among others, we use the confidence level of 90% [12-13,19]. This allows us to exclude 
a model with a p-value smaller than 0.1 from the MCS. In other words, the forecasts of this model are 
significantly less accurate than the models in the MCS. It is evident that a model with a larger MCS p-
value shows stronger predictive ability. 

Table 4 reports the out-of-sample forecasting performance of all the models, including the mean 
value of loss functions and the MCS p-values for the paired comparison of the HAR-RV type models 
and the extended models added ETF volatility Index. An impressive finding is that only two 
conventional models consistently appear in the MCS with the confidence level of 90%. Furthermore, 
the extended models always deliver the largest MCS p-value of 1. This evidence suggests that the 
method of adding volatility index has significantly better out-of-sample forecasting ability than the 
other conventional forecasting models in the prediction of the Chinese stock market volatility. This 
implies that the Chinese ETF volatility Index is a rather efficient variable to improve the forecast 
accuracy of the Chinese stock market volatility in the context of the country. 
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Table 4. Out-of-sample forecasting performances evaluated by 
loss functions based on the MCS test 

Forecasting models QLIKE MSE 
  Loss function P-value Loss function P-value 
HAR-RV 0.629  0.118  2.061  0.244  
HAR-RV-RS-I 0.629  0.088  2.005  0.247  
HAR-RV-SJ-I 0.631  0.082  1.863  0.258  
HAR-RV-SJ-II 0.630  0.112  1.849  0.693  
HAR-RV-VI 0.627  1.000  2.025  1.000  
HAR-RV-RS-I-VI 0.627  1.000  1.969  1.000  
HAR-RV-SJ-I-VI 0.629  1.000  1.812  1.000  
HAR-RV-SJ-II-VI 0.628  1.000  1.827  1.000  

This table reports the out-of-sample forecasting performance of eight HAR-RV-type models 
including the value of two loss functions and the MCS p-values. Two loss functions we consider are 
QLIKE and MSE. Bold figures highlight instances in which the MCS p-value is larger than 0.1. The 
entire sample period containing 2392 observations spans from April 18, 2011, to June 22, 2021, while 
the length of in-sample period is 1000. 

5. Robustness test 
5.1 Various sample periods 

Rossi and Inoue (2012) and Inoue, Jin, and Rossi (2017) emphasize that the arbitrary choices of 
different window sizes may result in quite different out-of-sample results in practical applications [20-
21]. (see,e.g. Jing Liu et al.,2019;Yaojie Zhang et al.,2020) [22-23].Therefore, the forecasting window 
size plays a crucial role in out-of-sample evaluation. Considering this, we additionally consider another 
two window sizes, where the initial in-sample estimation windows contain 800 and 1200 observations, 
so that the corresponding out-of-sample length is 1592 and 1192, respectively. It should be noted that 
both the two forecasting windows considered in this paper have a desirable trade-off between an initial 
in-sample estimation period that has enough observations to precisely estimate parameters and an out-
of-sample period that has a relatively long length for forecast evaluation. 

Table 5 reports the MCS p-values for an alternative forecasting window, in which the length of in-
sample periods is 800 and 1200. Analogously, this evidence suggests that the HAR-RV extended 
models are more likely to be the best model for Chinese stock markets under alternative window sizes. 
The extended models always deliver the largest MCS p-value of 1. Although the classic HAR-RV type 
models illustrate good results, the method of adding volatility index has significantly better out-of-
sample forecasting ability than the other conventional forecasting models. In conclusion, the out-of-
sample results are robust to various sample periods. 
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Table 5. Out-of-sample performance for different in-sample evaluation periods 

Forecasting models QLIKE MSE  
Loss function P-value Loss function P-value 

Panel A: the length of in-sample evaluation is 800 
HAR-RV 0.808 0.451 4.989 0.546 

HAR-RV-RS-I 0.809 0.328 4.867 0.466 
HAR-RV-SJ-I 0.813 0.313 4.852 0.195 
HAR-RV-SJ-II 0.813 0.340 5.252 0.429 
HAR-RV-VI 0.807 1.000 4.955 1.000 

HAR-RV-RS-I-VI 0.808 1.000 4.826 1.000 
HAR-RV-SJ-I-VI 0.811 1.000 4.749 1.000 
HAR-RV-SJ-II-VI 0.812 1.000 5.161 1.000 

Panel B: the length of in-sample evaluation is 1200 
HAR-RV 0.397 0.120 0.326 0.837 

HAR-RV-RS-I 0.398 0.090 0.323 0.837 
HAR-RV-SJ-I 0.400 0.112 0.331 0.950 
HAR-RV-SJ-II 0.400 0.096 0.330 0.827 
HAR-RV-VI 0.395 1.000 0.325 1.000 

HAR-RV-RS-I-VI 0.396 1.000 0.322 1.000 
HAR-RV-SJ-I-VI 0.398 1.000 0.330 1.000 
HAR-RV-SJ-II-VI 0.398 1.000 0.329 1.000 

This table reports the out-of-sample forecasting performance of 8 HAR-RV-type models including 
the value of two loss functions and the MCS p-values. Two loss functions we consider are QLIKE and 
MSE. Bold figures highlight instances in which the p-value is equal to 1. The entire sample period 
containing 2392 observations spans from April 18, 2011, to June 22, 2021, while the length of in-
sample period includes 800(Panel A) and 1200(Panel B). 

5.2 Alternative volatility estimator 
In view of the unobservable actual volatility, we further consider another prevailing volatility 

estimator, the realized kernel (RK) proposed by Barndorff-Nielsen, Hansen, Lunde, and Shephard 
(2008), to re-examine the out-of-sample performance for the eight above-mentioned forecasting 
models [24]. An appealing property of the realized kernel is that this volatility estimator is robust to 
market microstructure noise (Barndorff-Nielsen et al., 2008) [24]. Mathematically, the realized kernel 
for market i on trading day t can be defined as 

𝑅𝑅𝐾𝐾𝑡𝑡 = ∑  𝐻𝐻
ℎ=−𝐻𝐻 𝑘𝑘 � ℎ

𝐻𝐻+1
� 𝛾𝛾ℎ                                        (8) 

were 

𝛾𝛾ℎ = ∑  𝑀𝑀
𝑗𝑗=|ℎ|+1 𝑟𝑟𝑡𝑡,𝑗𝑗𝑟𝑟𝑡𝑡,𝑗𝑗−|ℎ|                                         (9) 

and 𝑘𝑘(𝑥𝑥) is the Parzen kernel function, which is given by 

𝑘𝑘(𝑥𝑥) = �
1 − 6𝑥𝑥2 + 6𝑥𝑥3    0 ≤ 𝑥𝑥 ≤ 1/2
2(1 − 𝑥𝑥)3    1/2 ≤ 𝑥𝑥 ≤ 1
0    𝑥𝑥 > 1

                               (10) 

It is necessary for H to increase with the sample size in order to consistently estimate the increments 
of quadratic variation in the presence of noise. We follow precisely the bandwidth choice of H spelt 
out in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009), which we refer the reader to for more 
details [25]. The data of the realized kernel are also available from the Oxford-Man Institute’s Realized 
Library. 
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We replace the realized volatility with the realized kernel in all the used models and then re-run 
these regression models to generate the realized kernel forecasts. Table 6 reports the MCS p-values 
when we use the realized kernel to estimate, forecast, and evaluate the Chinese stock market 
volatilities. We observe a robust result that the Chinese ETF volatility Index continues to show very 
powerful predictive ability. All the extended models always deliver the largest MCS p-value of 1 based 
on the loss functions QLIKE and MSE except one. In summary, the results of the MCS test are robust 
to alternative volatility estimators.  

Table 6. MCS p-values for an alternative volatility estimator of realized kernel 

Forecasting models QLIKE MSE 
 Loss function P-value Loss function P-value 

HAR-RV 0.688 0.071 2.490 0.178 
HAR-RV-RS-I 0.679 0.040 2.351 0.155 
HAR-RV-SJ-I 0.683 0.043 2.324 0.159 
HAR-RV-SJ-II 0.683 0.047 2.498 1.000 
HAR-RV-VI 0.685 1.000 2.430 1.000 

HAR-RV-RS-I-VI 0.676 1.000 2.286 1.000 
HAR-RV-SJ-I-VI 0.679 1.000 2.244 1.000 
HAR-RV-SJ-II-VI 0.679 1.000 2.510 0.864 

This table reports the out-of-sample forecasting performance of 8 HAR-RV-type models including 
the value of two loss functions and the MCS p-values. We use an alternative volatility estimator of the 
realized kernel. Two loss functions we consider are QLIKE and MSE. Bold figures highlight instances 
in which the p-value is equal to 1. The entire sample period containing 2392 observations spans from 
April 18, 2011, to June 22, 2021. 

5.3 Alternative evaluation methods 
Although the model confidence set (MCS) proposed by Hansen, Lunde, and Nason (2011) is very 

suitable for this study, we need employ other methods to consolidate our research results [13]. 
Following Degiannakis and Filis (2017), we employ the Direction-of-Change (DoC) as an 

additional out-of-sample evaluation criterion [14]. Degiannakis and Filis (2017) state that the DoC is 
central to the trading strategies of market timing and asset allocation [14]. Specifically, the DoC 
measures the proportion of forecasts that correctly predict the direction of the volatility movement. 
We let 𝑝𝑝𝑡𝑡 be a dummy variable that takes the value of one if a model correctly predicts the direction 
of volatility movement on trading day t, and zero otherwise. Consequently, this dummy variable is 
given by 

𝑝𝑝𝑡𝑡 = �
1 if 𝑅𝑅𝑉𝑉𝑡𝑡 > 𝑅𝑅𝑉𝑉𝑡𝑡−1 and 𝑅𝑅𝑅𝑅�𝑡𝑡 > 𝑅𝑅𝑉𝑉𝑡𝑡−1
1 if 𝑅𝑅𝑉𝑉𝑡𝑡 < 𝑅𝑅𝑉𝑉𝑡𝑡−1 and 𝑅𝑅𝑅𝑅�𝑡𝑡 < 𝑅𝑅𝑉𝑉𝑡𝑡−1
0    otherwise .

                         (11) 

Further, we define the DoC rate as the proportion of forecasts that correctly predict the direction of 
the volatility movement. Statistically, the DoC rate is equal to  1/𝑞𝑞 ∑  𝑚𝑚+𝑞𝑞

𝑡𝑡=𝑚𝑚+1 𝑝𝑝𝑡𝑡 . To explore the 
statistical significance ofthe directional accuracy, we use a nonparametric test proposed by Pesaran 
and Timmermann (1992) to test the null hypothesis that the DoC rate of a forecasting model of interest 
is less than or equal to the DoC rate of random walk against the alternative hypothesis that the DoC 
rate of a forecasting model of interest is larger than the DoC rate of random walk [15]. 

Table 7 reports the DoC results for all the forecasting models. First of all, we reject the null 
hypothesis of no directional accuracy at the 1% significance level for all the forecasting models, 
suggesting the success of the HAR-RV model as well as its extended models in the directional 
prediction. Second and more importantly, the two extended models (HAR-RV-RS-I-VI and HAR-RV-
SJ-I-VI) yield larger DoC rates than the corresponding original HAR-RV models. Also, the confidence 
levels for the higher DoC rates of the extended models are greater than those of the conventional HAR-
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RV models. On average, the HAR-RV-RS-I-VI model yields the largest DoC rate of 0.6334. In 
conclusion, the DoC results are basically consistent with the MCS results. The extended models 
commonly exhibit better predictive ability than the other original models from a directional accuracy 
perspective.  

Table 7. Direction-of-Change rates 

Forecasting models DoC rate PT statistic 

HAR-RV 0.6211*** 10.185 

HAR-RV-RS-I 0.6326*** 10.988 

HAR-RV-SJ-I 0.6183*** 9.913 

HAR-RV-SJ-II 0.6226*** 10.222 

Extend models   

HAR-RV-VI 0.6175*** 9.961 

HAR-RV-RS-I-VI 0.6334*** 11.090 

HAR-RV-SJ-I-VI 0.6262*** 10.545 

HAR-RV-SJ-II-VI 0.6219*** 10.155 
This table reports the Direction-of-Change (DoC) rates and the PT statistics of Pesaran and 

Timmermann (1992). We consider all the forecasting models used by this paper. Bold and underlined 
figures highlight instances in which the DoC rate is the larger than the corresponding conventional 
models. Statistical significance for DoC rate is based on the p-values of the PT statistic. Note that the 
null hypothesis of no directional accuracy is rejected at the 1% level for all of the reported DoC rates. 
The entire sample period containing 2392 observations spans from April 18, 2011, to June 22, 2021, 
while the length of in-sample period is 1000. ***Indicates significance at the 1% level. 

6. Conclusions 
In this paper, we predict the Chinese stock market (SSEC) realized volatility based on the HAR-

RV framework, which includes four popular HAR-RV-type models and four extended models by 
adding the variable Chinese ETF volatility index. The in-sample results suggest that the new variable 
shows a significantly positive impact on the future volatility of Chinese stock market. 

Using the MCS test to evaluate out-of-sample forecasting performance, we find that the four extend 
models exhibit significantly better out-of-sample forecasting performance than the four conventional 
HAR-RV type models. In addition to this, our results are robust to various sample periods, alternative 
volatility estimators (i.e., realized variance and realized kernel), and alternative evaluation methods. 
In terms of directional accuracy, the HAR-RV-RS-I-VI and HAR-RV-SJ-I-VI models generate higher 
DoC rates, suggesting superior predictive ability relative to the original models. In conclusion, the 
extended models performs better than classic HAR-RV volatility forecasting models. 
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